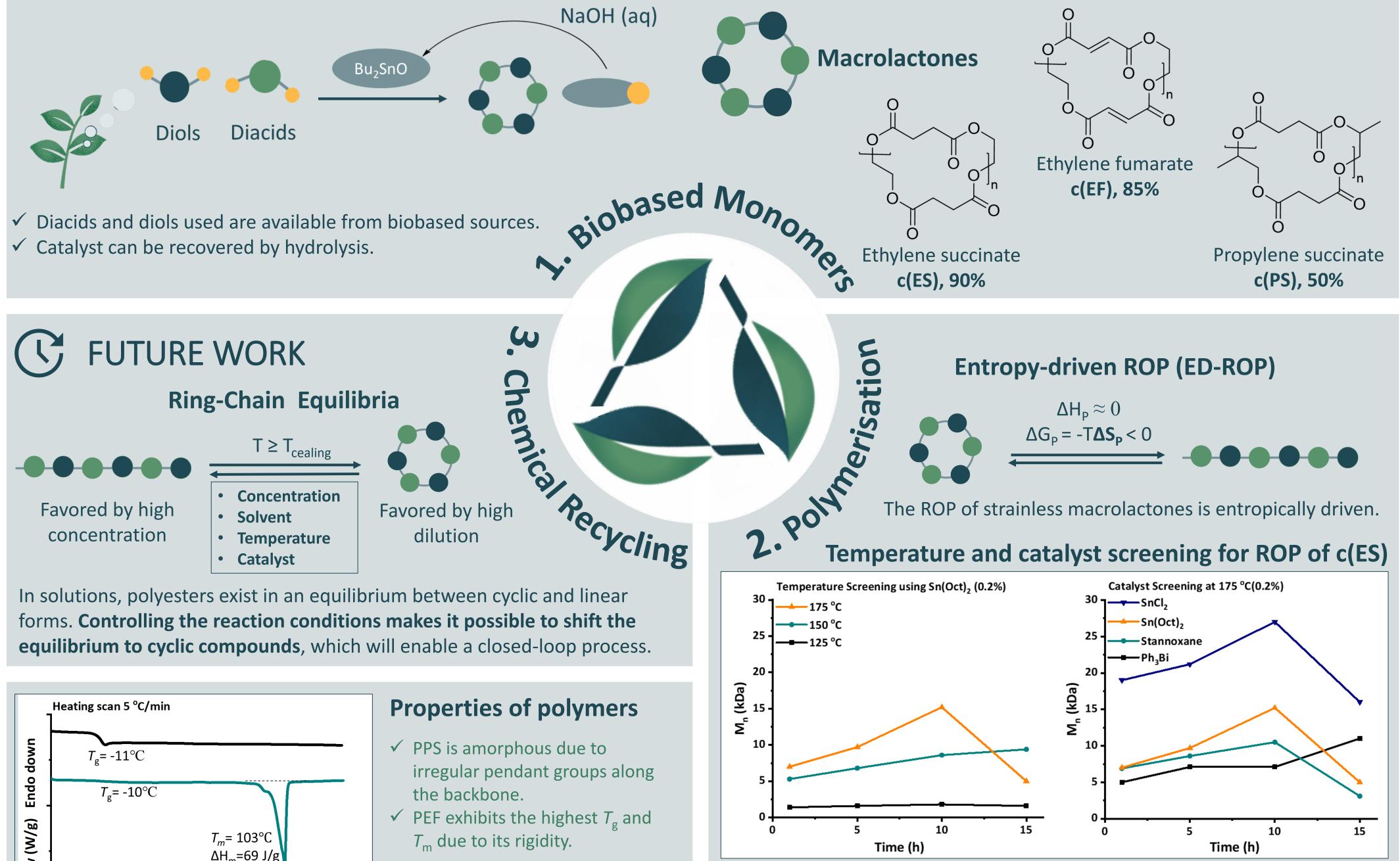
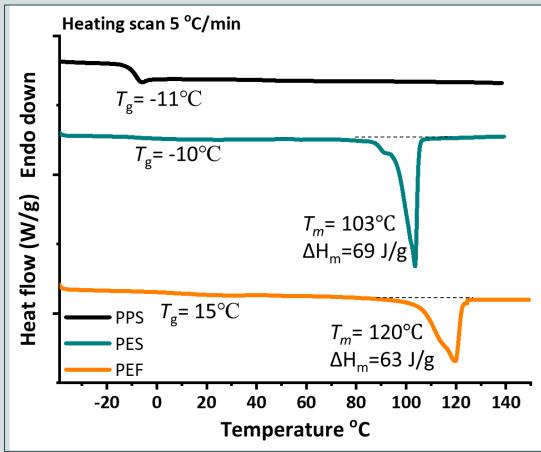


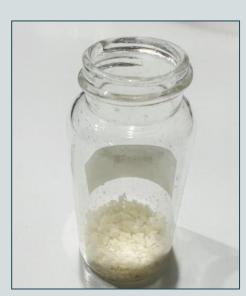
Ring-Opening Polymerisation of Biobased Macrolactones Towards the Circular Economy

Bige Bati¹, Andrew P. Dove¹, Haritz Sardon², Coralie Jehanno^{2,3} ¹ University of Birmingham, UK, ² University of Basque Country, Spain, ³ POLYKEY Polymers, Spain


NATURE PROJECT


While most plastics used for packaging perform well, they were not designed with degradability or recyclability in mind and account for the largest share of plastic waste that ends up in landfills and the oceans. The Nature project aims to develop new grades of polyesters by taking advantage of their biodegradability and recyclability for use in packaging applications.

nature-itn.eu


Aliphatic polyesters derived from biomass can be utilized in packaging and biomedical sectors. However, their production through polycondensation has certain drawbacks. This study intends to address these issues by exploring ring-opening polymerization (ROP), which can generate high molecular weight polymers under mild reaction conditions without producing any byproducts.

Following polymerisation optimisation, further studies will examine their barrier properties.

Neat conditions. The monomer-to-catalyst mol ratio is 1000:2 for all catalysts. M_n is determined by SEC analysis in CHCl₃ (0.5% NEt₃) eluent, calibrated against PS standards.

 \checkmark Prolonged reaction time causes a decrease in M_n due to side reactions occurring more prominently.

ROP of c(PS) and c(EF); temperature screening

Monomer	[Cat]:[Init]	[M] ₀ :[C] ₀ :[I] ₀	Solvent	T (°C)	t (h)	M _n (kDa) ^a	Ða
c(PS)	[TBD]:[BnOH] ^b	100:1:1	Toluene	50	48	no convers	sion
c(PS)	[TBD]:[BnOH] ^b	100:1:1	Toluene	90	25	13.2	1.5
c(FF) ^c	[Sn(Oct)]	100.0 2	Bulk	150	5	63	2

Poly (propylene succinate) Poly (ethylene succinate) Poly (ethylene fumarate) **PPS** PEF PES

CONCLUSION

- \checkmark Neat conditions, higher temperatures and metal-based catalysts are necessary to achieve higher M_n for ED-ROP of c(ES), while c(PS) can polymerise at lower temperatures.
- \checkmark ROP of c(EF) must be studied further as long reaction time and high temperature cause cross-linking. It has a more rigid structure than others.

c(EF) ^c	[Sn(Oct) ₂]	100:0.2	Bulk	175	crosslinked	

^a M_n and Đ are determined by SEC analysis in CHCl₃ (0.5% NEt₃) eluent, calibrated against PS standards.

^b Triazabicyclodecene (TBD) is used as the catalyst, and benzyl alcohol (BnOH) is used as an initiator.

^c 3 wt% 4-methoxy phenol is used as a radical scavenger in the polymerisation of c(EF).

 \checkmark Unlike the other macrolactones, c(PS) can polymerise using an organo-catalyst at 90 °C, possibly due to the contribution of side groups to ring strain.

✓ PES can be produced through ROP, similar to its commercial grades.

 \checkmark PEF is a novel polyester; the double bonds in its backbone offer various possibilities for post-functionalisation to confer specific properties upon the polyester or directly cross-linked.

